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N. The Parabolic Equation (PE) has applications in many different

scientific fields such as electromagnetics, optics theory, quantum
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20. Continued;

~mechanics, plasma physics, seismology, underwater acoustics, and others ,.,
The subject of this presentation is PE approximation as appliled to underwater "
acoustic wave propagation. A review will be given on past contributions, re- _.
cent developments will be highlighted, and, looking ahead, we will discuss
what the PE method can do in order to stimulate future research and develop-
maent, as well as applications, Intensive computations with respect to the PE :'
implementation will also be discussed. " -' "
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THE STATE-OF-THE-ART PARABOLIC EQUATION APPROXIMATION _ -
AS APPLIED TO UNDERWATER ACOUSTIC PROPAGATION WITH

DISCUSSIONS ON INTENSIVE COMPUTATIONS

The Parabolic Equation (PE) approximation was first introduced by

Tappert 1,2.3 over a decade ago. Tappert's three papers, which are

outlined in vugraph 1, are often referenced.

Computer Simulation of Long-Range Ocean Acoustic
Propagation Using the Parabolic Equation Method

F. D. Tappert and R. H. Hardin -

Eighth International Congress on Acoustics,
p. 452, London (1974)

The Parabolic Equation Approximation Method in
Wave Prooaaation & Underwater Acoustics

F. D. Tappert ..

ed. J. B. Keller and J. S. Papadakis

Lecture Notes in Physics, Springer-Verlag (1977)

Applications of the Split-Step Fourier Method to the Numerical
Solution of Nonlinear and Variable Coefficient Wave Equation .

R. H. Hardin and F. D. Tappert

SIAM Review 15, p.243 (1973) .-.-.

VUGRAPH 1

In recent years, many improvements were made on the PE technique with

respect to approximation, implementation, and application. Let us begin this

discussion by a brief review of how the parabolic wave equation was derived

by Tappert. %

Consider the two-dimensional Helmholtz equation in cylindrical k i"

coordinates, that is,

2 20 + iA +a4 22
4.27 1 ar + k n2(r,z) 4 . ,

. ..9......

where #(r,z) is the wave field, k t is the reference wavenumber, n(r,z)

is the index of refraction, r indicates the range direction, and z indicates .........

the depth direction.

Codes
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The PE approximation begins with the expression

6(r,.z) u(r,z) v(r), (2) .I

where v(r) is strongly dependent on the range variable r while u(r,z) is

weakly dependent on r. .4*W

a20 +8 I 8o 20 2n(~)4
8r2 4 -r T- a® " 0 0

0(r,z) = u(rz) v(r)

r " 1 U r v ~1

Vrr + -vr +uk2 v r0 Uu +I L1-.Vr kk)(n 2rr,)Z- 1  "

rr T +y 1 0F

Urr+ Ivr) Ur + uzz+ko n2(rz- 1)u 0

.,

i(k r - 2)

v(r) = H(kor) e 2

Urr + (21ko) ur + uU + k(f2(,z) - 1) u 0 0

ur = ko(nz(r,z) - 1) u

Standard PE

. J.

VUGRAPH 2 % %

Substituting Eq. (2) into Eq. (1) gives
*,I .?

*r u + , . . , ,a1r r 2 in2 21, -O
Uzz (o 3)"

[Vr . r r] +j [* L rr + G. r i) u * ~ ~V a 0 (3)

Set the first term of Eq. (3) in brackets equal to -k v and the second .

term in brackets equal to k2u, we obtain two equations:
0'

a%

p... -4i

V + v +k. 2 ,v0,(rr r r 0(4

2

D . Af

;e - - . - . . . .. . . . . . . .a ..



"A. %U M. ' -A-

TO 7241 7.

and

* ~ .v,) up + uZ k'(n2(r.z) 1 ) u a0.

Considering only the outgoing wave in the range direction, we see that

the solution of Eq. (4) is the zeroth order Hankel function of the first
.. . '

kind. H l)(kor). :"..

Applying the farfield approximation, k r>l, to the argument of

(k), we find that

v(r) H(1)(k , / e (0~) 0 ='- r (

Using Eq. (6) to simplify the coefficient (1/r + (2/v) vr), in Eq. 5.,

we findI2
Ur + (21k o ) ur +u + k 2(n(rz) 1)U- 0

Dropping ur, based on the paraxial approximation, .. ,

Ur 1<.c21koUr 1, we find

up 0 r"k

Ur ko k(n (r. z) No) u Zm '0(8) " "

This is the first parabolic wave equation derived by Tappert and is

referred to as the STANDARD PE.

I would like to take another approach to Eq. (8), which you will find

useful in observing some important physical properties.

14
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Uff + 21kour + uzz + kl(Wi(i~z) -1) U :0

L 1k0.-.Ik0 n- 1 k k ((zn~' a z 1)+_ I

[NO SCA1IERINGJ .,

Oui.way ou9tgo wave: J -W n-1)_ UO 0

M k2,

+

T %a

Note gec that Eqsern efct. (7) and (9) ar h ~ fadol fteese o a

sceaterng.m

so ut o ik 0 fI a U 0

* k -1 0 1 70 7r2-1 *=(0

beingtwetapproximatenthe9sqare-rootsoerifao l by tee sn

%

Again, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .cosdrn nyteoewyougigwvw elwt h

4solutio



%LdWV WW, WXV." -J -Y -._ -77 -7. r A- - '..1-

I

TO 7247

2 2

(n + -1 + a2
(1 1) )-az 'J (11)

We refer to this as the small angle approximation. Substituting Eq. (11)

into Eq. (10), we obtain the standard PE, that is, ,

u. - ko(n2(r,.z) - u ozz"

The derivation is left for the audience. It is important to note that at

this point the standard PE, based on the PE approximation, obeys the

following limitations:

LIMITATIONS

1. Farfield Approximation, kor 0, 1.

2. n(rz) Slowly Varying in r.

3. One-Way Outgoing Wave.

4. No Scattering.

5. A Particular Square-Root Approximation.

VUGRAPH 4

Within these limitations, the standard PE is a very good mathematical model
for long range, low frequency propagation. At this stage, the only effective

solution algorithm for the standard PE was the split-step Fourier algorithm

by Tappert and Hardin.3

Before I mention some earlier important developments, I want to 1

mention the 'Workshop on Wave Propagation and Underwater Acoustics." held in

Mystic, Connecticut, in November 1974. This workshop was not limited to PE,

but, after attending this workshop, a comprehensive article on PE was

written by Frederick 0. Tappert ('The Parabolic Approximation Method,'
2),

which is a chapter of the book cited in vugraph S.

5 5'. #.
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The Parabolic Equation Approximation in
Wave Propagation & Underwater Acoustics

F. D. Tappert
ed. J. B. Keller and J. S. Papadakis

Lecture Notes in Physics, Springer-Verlag (1977)

VUGRAPH 5

To this date, the Tappert article is still the most comprehensive article on

4
In 1977, there was another workshop in Woods Hole, Massachusetts,

where Tappert gave another paper on the application of his split-step

algorithm. Not many people are familiar with this paper. . ..- _

Selected Applications of the Parabolic Equation Method .
in Underwater Acoustics

F. D. Tappert

• International Workshop on Low-Frequency Propagation
& Noise, Vol. 2, Woods Hole, Mass. pp. 155-194,(1974). ,. -'

VUGRAPH 6

Since 1914, the interest in the PE was on the rise, but little was

done. However, there were a number of notable contributions.

The first practical results of applying the PE were published by C. W.
Spofford.5 Then a few papers 6-12 were published in relation to the

normal mode method and its application. These are

* 6

Aql
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A Synopsis of the AESD Workshop on Acoustic-Propagation -..-
Modeling by Non-Ray-Tracing Techniques, C. W. Spofford,
AESO TN-73-05_ (1(.973) .-.

AEO 9~IZ~---------------------
Eikonal Approximation and the Parabolic Equation, D. R.
Palmer, J. Acoust. Soc. Am., 6-(, ---_-976

Relation Between the Solutions of the Helmholtz and
Parabolic Equation for Sound Propagation, J. A. DeSanto, J. _......*
Acoust. Soc. Am., 62(2), 295-7(197L7 - -.-.. "..-'

A Correction to the Parabolic Equation, J. A. OeSanto, J.S. -S ."
Perkins, and R. B. Baer, J. Acoust. Soc. Am., 64(6), 1664.1666(l 1978 ...

On the Parabolic Approximation to the Reduced Wave
Equation, G. A. Kriegsmann & E. W. Larsen, SIAM J. Appl.
Math., 34 U1, 201-0 L---------
Helmholtz Equation as an Initial Value Problem with
Approximation to Acoustic Propagation, R. M. Fitzgerald, .
J. Acoust. Soc. Am. 57(U.839-842, 197)

Propagation of Normal Mode in the Parabolic
Approximation, S. T. McDaniel, J. Acoust. Soc. Am., 57(2), ,". ,
307-311_J197-- . . ...---.-. ---.---------------------- ,
Parabolic Approximation for Underwater Sound Propagation,
S. T. McDaniel, J. Acoust. Soc. Am., 58(6), 1178.1185 (1975)

VUGRAPH 7

Researchers are curious and interested in the relationship between the
10PE and the Helmholtz equation. Filtzgerald analyzed the PE In terms of

normal mode theory. Dave Palmer observed that the normal mode formulism

was difficult in ordering the geometric optics path-length parameter because

of mode-coupling. The PE removes this difficulty.

Then, during approximately the same time period, a few interesting

developments happened, one was the computer code.

7'.J.
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The Use of the Parabolic Equation Method in Sound
Propagation Modeling,

F. B. Jensen and H. Krol

SACLANTCEN MEMO SM-72 (1975) .

The AESD Parabolic Equation Model,

H. K. Brock

NORDA TN-12 (1978)

VUGRAPH 8

13 r.
Jensen had a Pf package called PAREQ in his laboratory performing

a variety of research and applications; so too did Brock.14 These computer

models used the split-step algorithm to solve the standard PE. G.
Gartrell 15 wrote a split-step code on the IBM 370/168.

However, in solving the standard PE, a number of users found a phase

error. DeSanto, Perkins, and Baer8 discussed this phase error and

introduced a correction to the parabolic approximation. Notable was a

technique introduced by Brock, Bichal, and Spofford16 to modify the

sound-speed profile to improve the accuracy of the PE.

Modifying the Sound-Speed Profile to Improve the Accuracy of

the Parabolic Equation Technique

H. K. Brock, R. N. Buchal, and C. W. Spofford

J. Acoust. Soc. Am., 62(3), pp. 543-552 (1977)

VUGRAPH 9 . -'

Interest was also increasing in the application of the PE to solve
real problems. The PE models in various laboratories were all based on the

use-_6 .:W
use of the split-step Fourier algorithm with an artificial bottom treatment. .

In order to apply the PE to solve real problems, the model would be

required to have many capabilities. The natural question is what can PE do?

9....l

% .. ' ,'% d. _

%. Main-

• l • q l" 4 I ' ll ~ , • " , .~ pI I 
" m" Idl P!q f- ( J ~ ~ i .~lm ai l--ml k- -I. . . .
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Can PE offer these capabilities. These questions stirred up research and

development interest. I ask the question in a different way -- what can we

do to improve the PE capability?

First, to improve the PE capability. Lee, Papadakis, and

Prieserl '15 initiated the numerical solution of the parabolic wave
equation so that under shallow water or strong bottom interaction

environments the numerical technique can handle the bottom boundary

condition.

,-S..-

Numerical Solution of the Parabolic Wave Equation:
An Ordinary-Differential-Equation Approach

D. Lee and J. S. Papadakis

J. Acoust. Soc. Am., 68, pp. 1482-1488 (1980) .
- -'..

Generalized Adams Methods for Solving Underwater Wave
Propagation Problems

D. Lee and S. Praiser

J. Comp. & Math. with Appls., 7(2), pp. 195-202 (1981)

Finite-Difference Solution to the Parabolic Wave Equation

D. Lee, G. Botseas, and J. S. Papadakis

J. Acoust. Soc. Am., 70(3), pp. 795-800 (1981)

VUGRAPH 10

Lee and Papadakis introduced the approach of using an ordinary

differential equation (ODE) to determine a special kind of bottom boundary -,

(rigid) within the framework of the PE.

This bottom boundary treatment was incorporated into the ODE and

finite difference models. At that time, we did not have a better

implementation of the ODE solution, but we concentrated our efforts onI

developing a very basic, general purpose finite-difference scheme, which
could be implemented into computer code. This scheme is known today as

the Ilmlicit Finite Difference (IFO) model and is an implicit Crank-Nicolson

9

.112
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method, which is unconditionally stable. The IFO model is used quite often .

to solve the standard PE. Z
• ... -,

We used the ODE model to solve a wedge problem consisting of range

versus propagation loss. The results turned out surprisingly well.

.5 -y 80H

,o1 ,,.s oa. - s . e. - *.. '
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1" ,r0' %

144

IFO model can handle bottem boundary conditions -- can Ct handle the

interface condition?

The problem did not seem to be a particularly difficult one, however, .

at that time, no existing PE code could do it.

V. *% %1

-A-
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II ,. 4 i

. . . . . . . . . . .'.5 '. -- - * .-. * .5 . *,... .



TO 7247 : .-

Bucker Problem w
SOUND SPEED (ns),

1480 1490 1500 1510

120- 1.0 - -
1498 n/"

" Z240-
Lu

* 360-
P =2.1 .,

FREQUENCY = 100 Hz "

SOURCE DEPTH = 30 m .I: .1
412 1 RECEIVER DEPTH = 90 m
512

Sound Speed Profile

J VUSRAPH 12

% The problem was solved easily by the normal mode solution. The normal mode J-

% solution was used as a reference solution for comparison of transmission s

loss predictions.

Y2

44 - Nofili~a. -I...."

Ne .. -.,

to %
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0I", ,

*. %*
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VUGRAPH 13

4', .. ..

11.
,11--
'A 4. :"

.' . "" "--,""" . """. .""" ". ,""" . """. .""" , ', ''% .' ," " . . . , ,% , ; . " . .,,,,''' ,,',', ,,s .,' ',s "''...' , ,' "." ",.' ,' '



77177%- 77-

% % "

..%V- s*., 64 4

TO 7241 d

Handling the interface wasn't difficult, but it required some thought as to I
the best approach. Thanks to many valuable discussions with Dr. Suzanne T.

McDaniel, we worked out a finite-difference treatment for the horizontal

interface.21  The horizontal interface development is documented in the

article outlined in vugranh 14-
*1V. :

A Finite-Difference Treatment of Interface Conditions for the p...
Parabolic Wave Equation: The Horizontal Interface

S. T. McDaniel and Ding Lee

J. Acoust. Soc. Am., 71(4), pp. 855-858 (1982)

VUGRAPH 14 .J -

We then incorporated the horizontal interface conditions into the finite

difference code and ran the Sucker problem on the VAX 11/780 computer at

NUSC.

62

64 - - NORMAL MODEe ; 0 , .... FD".""" .
-.-. ' .."

4 ::I, I ? ":

672

I~,,,*, % 
o

10 *..* %'

o t

02,

o
2. 4 a 0 12

VUGRAPH 15

As vugraph 15 shows. without the interface treatment, the results from both"'',

IFO and split-step do not agree with our normal mode reference solution .:.
results, but after the finite-difference treatment, the results are in ""

reasonable agreement.' -
12

.1% J%
64;'.I .7I

I . -I
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Naturally, it Is logical to extend the finite-difference technique to

handle the irregular interface condition.22 Dr. McDaniel and I have worked

this out and I shall talk about this a little later.

While the capablities of the PE were being developed, use of the PE

model was increasing. During this period of development, NORDA sponsored a

workshop, the ONORDA Parabolic Equation Workshop."23 Many interesting,

realistic problems were introduced at the workshop and a comprehensive

report was published.

NOADA Parabolic Equation Workshop

James A. Davis, DeWayne White, and Raymond C. Cavanagh

NORDA TN-143 (1981)

VUGRAPH 16 

One of the problems introduced was that of wide angle propagation.

Frequency = 250 Hz ,1500 S6 15 00 low

Water depth = 100 m SOUND SPEED
Sound sped in water . 1500 nVS 40 I
Density in water . 1.0 g0cm WATER

Density in bottom - 1.20cm g 1,0

Attenuation in water . 0 %'

Bottomn attenation a 0.5CIS~*Bottomn sound speed a 1660 mls "-

Maximum range = 10 km 120 BOTrOM

Source depth a OILS m n ~
ReIDceVr det a .5 m
Numier of Modes - 11 DEPTH

sound Speed Profile

VUGRAPH 17

This problem was solved satisfactorily by both the normal mode and the fast

field program (FFP). We then used the FFP solution as a benchmark reference

solution.

13

.4
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Feel fsield IFFP

- - - Standard PE

Se'

?0P.

I-.~~ 80018. . .

.-- sy 6.o 6.5 7.5 7. 60 8.i io i.8. 9 0. 10
RAN4GE (kint

Wide Angle Solution Comparison

VUGRAPH 18 -.

Note, in vugraph 18, that the dashed-dotted line was the solution produced ,

by the standard PE (both the split-step and the IFO), the disagreement is .

clear. It was due to the size of the angle of propagation. An important

capability required to produce agreement is the wide angle capability.

Let me briefly describe the mathematical development of the wide angle

capability. Recall the one-way outgoing wave equation, that is.

1% 0.

where we made the approximation

1 + (n2  - 1) + - 1 2 g + 1 [n2 -Z2

to obtain the standard PE

Ur I k(n 2(r.z) - )u + - z

". ~i ".."PW- -Z

- One-way outgoing wave: + iko - k 1+ 1 u 0

1 + (nl - 1) + 1 a2 +i1 1n -1) + A1

~k W8 2 o[k82

40

ur i k(n 2 (r,z) - 1) u + Z
9.o

VUGRAPH 19 '" ,

14
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To be general, we approximate the square-root operator by a rational

function approximation as follows: %, 5
2 1k

1n(z -1n(rZ - 1),

k1 +(ZzZ -z q 2( + 1)4 a.7  (12)

If p - 1/2 and q - 0, we see clearly it reduces to the small angle

approximation, thus, resulting in the standard PE.

For a special selection, p - 3/4 and q - 1/4, the right-hand side of

Eq. (12) becomes *. .

1 a ko ."4i "

1 %z1j (2 - 1
r(nZ z) 1 + I~a .

k 0 0 az f 2 r z z (13

which is the rational function approximation of the square-root operator by

John F. Claerbout. 25 We choose to keep p and q arbitrary so that we can

determine p and q to suit our needs.

If we use Eq. (12) for the square-root operator and substitute it Into "

the one-way outgoing wave equation, we find a pseudopartial differential . ,

equation, that is, ,p

I + Pjy~Z n Ir ) 2 +1

(..k~1k (n2 rz 1))
- " u ko + - 1 (14)

which is the Wide Angle Wave Equation.

15
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A Rational Function Approximation

+ I 2 • 
%  %

I P ("' ""z) - 1) % z ; "

1 + 1n(nr)) *) + 0

I+ q 4n(rZ) - 1) + z.
•~~ ~ 1Z -- I---

. '"~~ ~~~~~~~~ + 4 (nz(r~z) -1 zJ, ", ,,"j''

Weted o efrJo it Cas bth WroideAtingl PCbu ina ens.tiss-

actaly.efrr ng, oate peudpril ifrnta qation (14). -.

0 1 + 1 (n2(r~z) - 1) + 1 32 '"- ,.

hWide Angle apa buily y (n(r,z) - 1) + 
p

- Fast 3il (F P E ac

VUGRAPH 20-,

We tend to refer to it as the Wide Angle PE, but in a sense this is _.

deceptive. The PE is our key equation. When p - 1/2 and q - , the standard
PE is a special case. Therefore, when we refer to the Wide Angle PE, we are"-

actually referring to the pseudopartial differentian equation (14).

-o - - Sadr PE

-" Withthe wtd angle apabiliy, you e th t utiFodued,

100-

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0%
RANGE (km)

Wide Angle Solution Comparison

* VUGRAPH 21
* 16
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24-27There have been a number of authors who have contributed to the

theoretical development of the wide angle capability.

Fundamentals of Geophysical Data Processing with
Applications to Petroleum Prospecting
Jon F. Claerbout .

McGraw-Hill (1976)

High Angle PE
Robert R. Greene
NORDA Parabolic Equation Workshop (1981) ,

IF): Wide Angle Capability
George Botseas, Ding Lee, and Kenneth E. Gilbert * -'

NUSC TRt6905 (1983)

Extension of the Parabolic Equation Model for High-Angle
Bottom-interacting Paths
L B. Dozier and C. W. Spofford P%.%
SAI Technical Report SAI-78-712-WA (1977)

VUGRAPH 22

Greene used the term "rational parabolic' as opposed to "parabolic.' He also

applied the rational function approximation to the square-root operator.

This rational function approximate technique was applied earlier by25
Claerbout. 2

A number of other people also examined and developed the wide angle

capability. At NUSC, we incorporated this into our IF9 code and a

comprehensive report was published. 24 In the seismology field, Berkhout

used the continued fraction to approximate the square root operator.28

.5 - .% %S ."

Wave Field Extrapolation Technique in Seismic
Migration

A. J. Berkhout Ii-.-

Geophysics, Vol. 46, #12, pp. 1838-1656 (1981)

VUGRAPH 23
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It is interesting to note that Berkhout's first order continued fraction

coincides exactly with Tappert's standard small angle PE. His second order

continued fraction coincides with the Claerbout approximation. Roughly

speaking, the small angle PE can accommodate propagation angles up to 150,

and wide angle PE (IFO) can accommodate propagation angles up to 400.

David Thomson29 was the first to apply the Split-step algorithm to

handle the wide angle. ,

A Wide Angle Split-Step Algorithm for the Parabolic

Equation

David J. Thomson and N. R. Chapman

J. Acoust. Soc. Am., 74(6), pp. 1848-1854 (1983)

VUGRAPH 24

Recently, one of my colleagues, Donald St. Mary30 of the University of

Massachusetts, developed a very high angle PE using a higher order rational

approximation that can accommodate a propagation angle greater than 450.

This is good news in the area of shear wave propagation. % -.- %

Formulation and Discretization of a Very Wide Angle
Parabolic Equation

Donald F. St. Mary and Ding Lee (1984) .. --

VUGRAPH 25

All the authors I have mentioned thus far have made contributions to

the wide angle capability in this period of time. Two researchers, Estes and31 I' 11
Fain, started earlier examining the wide angle formulation using the

Taylor series expansion.

z,,
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Numerical Technique for Computing the Wide Angle -F.-'

Acoustic Field in an Ocean with Range-Dependant
Velocity Profiles -

L E. Estes and G. Fain

J. Acoust. Soc. Am., 62(1), pp. 38-43 (1977)

VUGRAPH 26

Continuous use of the PE for research and application purposes showed

reasonable success, however, under unusual environments, it was not fully

developed to handle everything. SACLANT and NORDA called our attention to

the fact that in the irregular sloping interface situation, if the depth

partition points do not fall on the interface boundary, inaccuracy will 4.

occur. In numerical analysis language, this is called numerical reflections.

The present computer code cannot handle the situation without some

modification because the irregular interface conditions treatment is not

included in the present code. In addition to theprogress made by Mcuaniel

and me, recent progress has been made by Jaeger 32 to treat the interface

condition by using the irregular interface condition developed by McDaniel

and me.

A Computer Program for Solving the Parabolic Equation
Using an Implicit Finite-Difference Solution Method
Incorporating Exact Interface Conditions

Larry Ernest Jaeger

Naval Postgraduate School, MS Thesis (1983)
A Finite-Difference Treatment of Interface Conditions for the

Parabolic Wave Equation: The Irregular Interface ;

Ding Lee and S. T. McDaniel ..k.
J. Acoust. Soc. Am., 73(5), pp. 1441-1447 (1983)

VU6RAPH 27"
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Independently from the direct application of the irregular interface

condition, Jules doG Gribble3  made an important improvement on the finite%

difference model.

Jules allows variable mesh spacing and deals with interfaces that do

not lie on a mesh point. He extended the finite difference treatment of

interfaces to the parabolic wave equation. Jules' main effort was centered

at the employment of variable vertical mesh size in conjunction with a high

level system of ODE solver.

Extending the Finite Difference Treatment of Interfaces
When Using the Parabolic Wave Equation A

Jules deGribble

J. Acoust. Soc. Am., 76(1), pp. 217.221 (1984)

VUGRAPII 28

Up to this point, it seems that there is enough PE capability for research

studies as well as for applications. Three types of PE models exist.

EXISTING PARABOLIC EQUATION MODELS

1. SpUt-Step Fourier Aigorithm Model ,~

2. Implicit Finite-Difference Model

3. Ordlnary-Differential-Equation Model

VUGRAPI 29

F', Little has been done to compare the available computer models. The

only published literature was given by Kewley3 who discussed practical

solutions of the PE model for underwater acoustic wave propagation.

20
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Practical Solutions of the Parabolic Equation Model for .'.
Underwater Acoustic Wave Propagation
in Computational Techniques & Applications Conference

D. J. Kewley, L T. Sin Fai Lamn, and G. Gartrell
ed. J. Noye, Sydrey .4

North-Holland, Amsterdam (1983) ..

VUGRAPH 30

Among these three models, IFO is the more general purpose. The ODE

solution has great potential, but is not yet fully developed. Applications

of the PE model indicates that it is doing well as a research code,
-.- ,

especially the IFO code, because of its accurate computation of the wave

field. However, a number of users are actually using these codes for

applications.

In solving either the small angle PE or the wide angle wave equation,

we deal with one input parameter, the reference wavenumber ko . Application
0,

of the above equations to solve real problems requires a clever selection of

the reference wavenumber ko. This selection was ignored by the model

developers and the users. For the user, in practice, he does not usually '.

have the knowledge to select the best ko; therefore, users have, in most

cases, ignored the selection of ko. The model developer built in the

automatic selection of ko according to physical experiences. Inappropriate

k will lead to an evident phase error. Pierce recently reemphasized the .

importance of ko selection and introduced a formula to determine the range

of ko based on the Rayleigh quotient. Some numerical experiments have been

carried out at the Naval Underwater Systems Center, New London Laboratory;

results show some phase shift effects dependent on ko variations. Tappert

and Lee joined Pierce in studying the natural selection of k "
0

21 ..
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The Natural Reference Wavenumber for Parabolic 1
Approximations in Ocean Acoustics

Allan D. Pierce

J. Comp. & Math. with Appls. (To be published) (1984) *'1 ".

VUGRAPH 31

It is interesting to note that L. Naheim-Phu and Taopert36 developed

a PE box that can be put on shipboard for fast prediction.
.'%'

A High-speed. Compact, and Interactive Parabolic Equation

SOlution GENerator System (PESOGEN)

Lan Ngheim-Phu and F. D. Tappert

J. Acoust. Soc. Am., 75(S1), p.s26 (1984)

VUGRAPH 32

The interest in the PE solution has continuously increased. An

interesting development was the Yale University Workshop.3 7 Three days

were devoted to discussions by invited speakers about the state-of-the-art .',..

of computational ocean acoustics.

COMPUTATIONAL OCEAN ACOUSTICS WORKSHOP 
,

YALE UNIVERSITY

Sponsors: ONR (Math. Dept.)
Yale U. (Computer Science Dept.)
NUSC (Independent Research)

Special Issue: J. Comp. & Math. with Applications

Book: Pergamon Press 
....-... J

Editors: Martin H. Schultz and Ding Lee

VUGRAPH 33
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Besides the book published by the Pergamon Press, there was a technical

document outlining the progress in the development and application of the PE.

I. .i

N, .
Recent Progress in the Development and Application of the
Parabolic Equation

Ed. Paul 0. Scully-Power and Ding Lee

NUSC TD7145 (1984) I _

VUGRAPH 34

Most contributions we have mentioned so far deal with the solution of
38

linear PE. McDonald and Kuperman developed a two-dimensional (range and

depth) formula for the propagation of nonlinear acoustic pulses and weak

shocks In a refracting medium. The equation they developed is the nonlinear

time domain counterpart of the linear frequency domain PE.

Time Domain Solution of the Parabolic Equation Including

Nonlinearity, E. S. McDonald and W. A. Kuperman, To appear

in J. Comp. & Math. with Appis. (1985)

VUGRAPH 35

39 ..-

This technical document contains some of the interesting topics Tappert

and I discussed over a period of two summers. These include . -..-

° .*,.°-.'.
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* Range Retraction Corrected PE. (ret 40)
" Density Effects in PEAref 39) I--
" Time Domain PS.
* High Frequency PE (hybrid ray-PE). (ref 39)
0 Backscattering (in range) PE.(ref 41)
" Rough Boundaries In PE.(ref 42)
* 3-Dimensional PDE.(ref 43)
* Stable Explicit Schemes for Solving 3-Dimensional

(2-Dimensional) PE
4 Shear Waves In PE.

0 Match Interface Conditions Between Fluid and Elastic
Media.

* Large Angle PE.
* Currents in PE.
* Doppler Effects In PE.
" Moving Sources and Receivers, or Time-Variables.
0 The Application of Multi-Array Processors to Solve the

Parabolic Wave Equation .-. .
* Reciprocity in the Time Domain and the PE Method.

VUGRAPH 36

As for the computation of long range propagation, it is on a very

large scale. Ideally, we would like to have in principle

LARGE SCALE COMPUTATIONS

1. Accuracy

2. Speed

3. Minimal computer storage requirements

VUGRAPH 37

Let me use the IFO as a simple example. Using the IFO to solve the parabolic ."
wave equation, either small angle or wide angle, requires the solution of a

system of equations of the form

Aun+li= Sun + un + un+1
i, I

VUGRAPH 38
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Since both matrices A and B are tridiagonal, a special recursive formula is

applied to solve the system at minimal cost. Not counting the overhead, the

tridiagonal solver requires 6N operations. The solution looks so simple and

economical that it does not seem to require intensive computations even for

long range propagation problems. However, this is not generally true. Let us

recall our earlier solution to the wedge problem of a rigid bottom boundary
condition. Our early solution to this problem was applying the Generalized

Adams ODE method, which produced the accurate solution. %

20
% Fr~q~wc 00 OKIS1M7 FEWO 30 Surc O~8 - 0S2 meit

~oSo
30 Sow* Ov' * %I

SShailow.to-Deep Water Propagation Wedge Solution Comparison

' " VUGRAPH 39- -

'. For the sloping bottom boundary, in order to solve the system "

• .- satisfactorily, we adopted a variable dimension procedure. We started at '--
i.. approximately 348 . for a 0.15 m depth increment and ended up to solve an.-

*' intial system of equations of order 400. Oue to the memory storage limit, ,
'v calculations were not allowed to go up to a maximum range of 10 kmn8 which-.
. - means we have to solve a system of equations of order 5740. Recently, we

,'", ~improved the technique and relaxed the storage requirement, thus, increased" €

" ". the speed. "'

25 8q
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The parabolic wave equation can be solved by a first order Generalized

Adams method.44

PE Ur = a(ko,r,z)u + b(ko,r,z)uzz

ODE Ur = A(ko,r,z)u + g(ko,r,z,uo)

a" GAB um + 1 = eAhun + h(Ah) - 1(eAh -g n

EXP eAh=(I - Ah) -1

Improved
GAB (I - Ah)un + I = un + hgn

VUGRAPH 40

Ah ..

Since Matrix A increases dimension at every range step, eAh has to be

updated at every range increment. It costs N
3 operations for the inversion %

2
and cost N memory storages because we calculate the matrix exponential by

the rational Pade approximation, which requires the inversion of an NxN

matrix. Even though the Matrix A is tridiagonal, the inverse destroys the

tridiagonal property and fills up the storage. You can see the cost. By a

careful study, for a reasonable choice of the step size, we can calculate

the new wave field by avoiding this expensive matrix exponential calculation

and solving a system of equations.

This system is again tridiagonal, we reduce N3 operations to 6N

operations; moreover, we reduce a N2 memory storage requirement to only 3N

storages. By coincidence, this problem can also be solved nicely by the IFO.

Now, one can again, by taking advantage of using hardware, improve the

a-. efficiency of the computation. You shall hear this from other talks.

26-'
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CONCLUSIONS -

%

7 %*~d. %I

Now you have heard of. the many important contributions toward the

application of PE approximation in solving ocean acoustic problems and have

also heard of some interesting PE developments. You may note that there are

many not yet well-developed PE approximations, many more than existing PE

capabilities. However, I would like to call your attention to the fact that

NOT every problem can be solved by the PC approximation in an efficient

manner. If the physical conditions fall within the limitation of the PE

*. approximation, PE approximation is an efficient method to apply.

NOT every problem can be solved by .

-'S the Parabolic Equation Approximation

VUBRAPH 41

I welcome your comments and participation in solving these problems and 4

applying your solutions to realistic problems.

Thank you.

a. 
*% 4--

.1
V A.

,
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